论文标题

问卷到PDE:从混乱的数据到新兴的生成动态模型

Questionnaires to PDEs: From Disorganized Data to Emergent Generative Dynamic Models

论文作者

Sroczynski, David W., Kemeth, Felix P., Coifman, Ronald R., Kevrekidis, Ioannis G.

论文摘要

从以不同(也有组织的)参数集获得的空间变化和时间不断发展的系统的观察值开始,我们演示了参数依赖性,进化部分微分方程(PDE)模型的数据驱动的推导。这种张量的数据让人联想到洗牌(多维)拼图瓷砖。进化方程(其“空间”和“时间”)的自变量以及它们的有效参数都是“紧急”的,即以数据驱动的方式确定了我们对它们中的行为的观察结果。我们使用基于扩散地图的“问卷”方法来构建对数据的新兴空间/时间/参数空间的参数化。这种方法通过在“空间”,“时间”和张量的“参数”轴上连续观察数据来迭代处理数据。一旦组织了数据,我们就会使用机器学习(此处,神经网络)来近似于该新兴空间中演化方程的操作员。我们的说明性示例基于先前开发的果蝇胚胎发育的顶点信号模型。这使我们能够讨论该过程的特征,例如对称性破坏,翻译不变性和新兴PDE模型的自主性及其可解释性。

Starting with sets of disorganized observations of spatially varying and temporally evolving systems, obtained at different (also disorganized) sets of parameters, we demonstrate the data-driven derivation of parameter dependent, evolutionary partial differential equation (PDE) models capable of generating the data. This tensor type of data is reminiscent of shuffled (multi-dimensional) puzzle tiles. The independent variables for the evolution equations (their "space" and "time") as well as their effective parameters are all "emergent", i.e., determined in a data-driven way from our disorganized observations of behavior in them. We use a diffusion map based "questionnaire" approach to build a parametrization of our emergent space/time/parameter space for the data. This approach iteratively processes the data by successively observing them on the "space", the "time", and the "parameter" axes of a tensor. Once the data are organized, we use machine learning (here, neural networks) to approximate the operators governing the evolution equations in this emergent space. Our illustrative example is based on a previously developed vertex-plus-signaling model of Drosophila embryonic development. This allows us to discuss features of the process like symmetry breaking, translational invariance, and autonomousness of the emergent PDE model, as well as its interpretability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源