论文标题
小$ x $的夸克和gluon螺旋进化:修订和更新
Quark and Gluon Helicity Evolution at Small $x$: Revised and Updated
论文作者
论文摘要
我们重新审视了小bjorken- $ x $ gluon和singlet quark螺旋分布($ s $ channel)形式主义的问题。早期在同一框架中就该主题进行的工作导致了Gluon场力强度$ f^{12} $和Quark“轴向电流” $ {\barψ}γ^+γ^5ψ$ operators(夹在适当的轻孔Wilson线之间)中的“轴向电流” $ {\barψ}γ^+γ^5ψ$。 $α_s\,\ ln^2(1/x)$,$α_s$ the stront耦合常数)。在这项工作中,我们观察到,上述操作员与另一个Gluon操作员的重要混合,$ \ OverLeftarrow {d}^i \,{d}^i $,也夹在轻孔Wilson线之间(带有重复的索引$ i = 1,2 $的重复索引$ i = 1,2 $),在先前的作品中缺少。该操作员具有子eikonal(协变量)阶段的物理含义:其对螺旋性演变的贡献与另一个子欧洲子操作员成正比,$ d^i- \ OverLeftArol {d}^i $,与Jaffe-Manohar Palluons分布有关。在这项工作中,我们将该操作员包括在小$ x $ helicity的演化中,并构建一个新颖的进化,将所有三个操作员混合在一起($ d^i- \ OverLeftarrow {d}^i $,$ f^{12} $,$ f^{\ bar单座}γ^+γ^5ψ$),概括了先前的结果。我们还以大$ n_c $和大$ n_c \&n_f $ limits构建了闭合的DLA进化方程,分别具有$ n_c $和$ n_f $的夸克颜色和口味的数字。从数值上求解大$ n_c $方程,我们获得以下小$ x $渐近级和gluon螺旋分布的$Δς$和$Δg$,以及$ g_1 $结构函数,\ [Δς(x,q^2)\simδ(x,x,q^2) g_1(x,q^2)\ sim \ left(\ frac {1} {x} \ right)^{3.66 \,\ sqrt {\ frac {\ frac {α_s\,n_c} {2π}}}}}}}}},\ \ \ \ \ \],与早期的工作bybartels,bartels,rys,ermermolaev and rys and rys and rys and rys。
We revisit the problem of small Bjorken-$x$ evolution of the gluon and flavor-singlet quark helicity distributions in the shock wave ($s$-channel) formalism. Earlier works on the subject in the same framework resulted in an evolution equation for the gluon field-strength $F^{12}$ and quark "axial current" ${\barψ}γ^+γ^5ψ$ operators (sandwiched between the appropriate light-cone Wilson lines) in the double-logarithmic approximation (DLA: summing powers of $α_s\,\ln^2(1/x)$ with $α_s$ the strong coupling constant). In this work, we observe that an important mixing of the above operators with another gluon operator, $\overleftarrow{D}^i\,{D}^i$, also sandwiched between the light-cone Wilson lines (with the repeated index $i=1,2$ summed over), was missing in the previous works. This operator has the physical meaning of the sub-eikonal (covariant) phase: its contribution to helicity evolution is shown to be proportional to another sub-eikonal operator, $D^i-\overleftarrow{D}^i$, which is related to the Jaffe-Manohar polarized gluon distribution. In this work we include this operator into small-$x$ helicity evolution, and construct a novel evolution mixing all three operators ($D^i-\overleftarrow{D}^i$, $F^{12}$, and ${\barψ}γ^+γ^5ψ$), generalizing the previous results. We also construct closed DLA evolution equations in the large-$N_c$ and large-$N_c\& N_f$ limits, with $N_c$ and $N_f$ the numbers of quark colors and flavors, respectively. Solving the large-$N_c$ equations numerically we obtain the following small-$x$ asymptotics of the quark and gluon helicity distributions $ΔΣ$ and $ΔG$, along with the $g_1$ structure function, \[ΔΣ(x,Q^2)\simΔG(x,Q^2)\sim g_1(x,Q^2)\sim\left(\frac{1}{x}\right)^{3.66\,\sqrt{\frac{α_s\,N_c}{2π}}},\] in complete agreement with the earlier work by Bartels, Ermolaev and Ryskin.