论文标题
使用可见光的机器学习识别有机化合物
Machine learning identification of organic compounds using visible light
论文作者
论文摘要
在科学和工程的几个领域,识别化合物至关重要。基于激光的技术对于自主化合物检测很有希望,因为材料的光学响应编码了足够的电子和振动信息,以供远程化学识别。使用红外吸收光谱的指纹区域对此进行了利用,后者涉及一组密集的吸收峰,这些吸收峰是个体分子所特有的,从而促进了化学鉴定。但是,尚未实现使用可见光的光学识别。利用数十年的实验折射率数据在纯有机化合物和聚合物的科学文献中,从紫外线到远红外的广泛频率,我们开发了一个机器学习分类器,该分类器可以基于可见的光谱区域的单个波长分散测量,从而准确地识别有机物种,从而识别有机物种,从而避免了可见的光谱区域,从而使其远离吸收率。这里提出的光学分类器可以应用于自主材料识别协议或应用程序。
Identifying chemical compounds is essential in several areas of science and engineering. Laser-based techniques are promising for autonomous compound detection because the optical response of materials encodes enough electronic and vibrational information for remote chemical identification. This has been exploited using the fingerprint region of infrared absorption spectra, which involves a dense set of absorption peaks that are unique to individual molecules, thus facilitating chemical identification. However, optical identification using visible light has not been realized. Using decades of experimental refractive index data in the scientific literature of pure organic compounds and polymers over a broad range of frequencies from the ultraviolet to the far-infrared, we develop a machine learning classifier that can accurately identify organic species based on a single-wavelength dispersive measurement in the visible spectral region, away from absorption resonances. The optical classifier proposed here could be applied to autonomous material identification protocols or applications.