论文标题
使用自适应贝叶斯策略的最佳冷原子温度计
Optimal cold atom thermometry using adaptive Bayesian strategies
论文作者
论文摘要
在量子技术中,几乎没有超速原子系统的精确温度测量至关重要,但可能是非常密集的。在这里,我们提出了一个自适应贝叶斯框架,该框架大大提高了冷原子温度估计的性能。具体而言,我们从真实和模拟释放的 - 接收到的温度计实验中处理的数据在光学镊子中冷却至微底藻范围的几个钾原子。从模拟中,我们证明了自适应选择释放时间 - 接收时间以最大化信息增益确实会大大减少估计收集到最终读数所需的测量数量。与常规方法不同,我们的建议系统避免捕获和处理非信息性数据。我们还发现,利用所有先验信息的更简单的非自适应方法可以产生竞争结果,我们对实际实验数据进行了测试。此外,我们能够产生更可靠的估计值,尤其是当测量数据稀缺且嘈杂时,它们会在渐近极限中更快地收敛到实际温度。重要的是,潜在的贝叶斯框架不是平台特定的,并且可以适应其他设置中的精度,从而在量子温度计中开放了新的途径。
Precise temperature measurements on systems of few ultracold atoms is of paramount importance in quantum technologies, but can be very resource-intensive. Here, we put forward an adaptive Bayesian framework that substantially boosts the performance of cold atom temperature estimation. Specifically, we process data from real and simulated release--recapture thermometry experiments on few potassium atoms cooled down to the microkelvin range in an optical tweezer. From simulations, we demonstrate that adaptively choosing the release--recapture times to maximise information gain does substantially reduce the number of measurements needed for the estimate to converge to a final reading. Unlike conventional methods, our proposal systematically avoids capturing and processing uninformative data. We also find that a simpler non-adaptive method exploiting all the a priori information can yield competitive results, and we put it to the test on real experimental data. Furthermore, we are able to produce much more reliable estimates, especially when the measured data are scarce and noisy, and they converge faster to the real temperature in the asymptotic limit. Importantly, the underlying Bayesian framework is not platform-specific and can be adapted to enhance precision in other setups, thus opening new avenues in quantum thermometry.