论文标题

反复可读的状态,自发崩溃和量子/经典边界

Repeatedly readable state, spontaneous collapse, and quantum/classical boundary

论文作者

Peng, Xiao-Fu, Luo, Yu-Hang, Zhu, Jiang, Hua, Bang-Hui, Chen, Xue-Nan, Lian, Dan-Dan, Chen, Zi-Wei, Chen, Xiang-Song

论文摘要

我们提出了一个模型来识别量子/经典边界。该模型引入了状态叠加的自发崩溃:$ \ frac {d} {dt}ρ_{ij} = - \ frac {i} {i} {\ hbar} [h,ρ] _ {ij} _ {ij} -p_} -p_} - ρ_{ij} {ij}/τ_{与其他崩溃模型不同,折叠比例$τ_{ij} $此处不包含通用参数,而是由两个状态$ |指定的。我\ rangle $和$ | j \ rangle $:如果每个状态在原则上是{\ em},则可以反复读取(通常是通过QND测量),则$τ_{ij} $是{\ em潜在的}所需的时间来区分这两个状态,并且崩溃发生自发{\ em em vishice {\ em notical Moniture}任何实际的实际监控。否则,$τ_{ij} = \ infty $,这意味着不会崩溃和永恒的叠加。如果一个状态不可重复阅读,或者在特定情况下可能无法区分两个状态(例如,在Rabi振荡中),则会发生这种情况。详细分析表明,对于“被困的schr {Ö} dinger的猫”,$ | {\ rm的叠加} \ rangle $和$ | {\ rm and} \ rangle $如果$ e d \ gg4π\ hbar c $,则允许,如果$ e d \ le4π\ hbar c $,其中$ d $是陷阱分离,而$ e $是$ e $,则可以用$ m v^2 $估计。该模型还限制了“自由schr {Ö} dinger的猫”,以显示双缝干扰,如果$pθd\ ge 8 \ hbar $,其中$ p = mv $,$θ$是两个轨迹所跨越的角度,而$ d $是缝隙分离。相反,该模型对无质量光子的一致长度没有限制,因此米歇尔森干涉仪的臂可以任意长。我们提出的自发崩溃可能会发生在一个孤立的系统中,并与与环境相互作用引起的脱碳相似。

We propose a model to identify the quantum/classical boundary. The model introduces a spontaneous collapse of state superposition: $\frac{d}{dt} ρ_{ij} =-\frac{i}{\hbar}[H,ρ]_{ij}-ρ_{ij}/τ_{ij}$. Different from other collapse models, the collapsing scale $τ_{ij}$ here does not contain a universal parameter, but is specified by the two states $| i\rangle $ and $ | j\rangle$: If each state is {\em in principle} repeatedly readable (typically by a QND measurement), then $τ_{ij}$ is the {\em potentially} needed measuring time to discriminate the two states, and the collapse occurs spontaneously {\em without} any actual monitoring. Otherwise, $τ_{ij}=\infty$, which means no collapse and everlasting superposition. This happens if one state is not repeatedly readable, or if the two states cannot possibly be discriminated in a particular circumstance (for example in the Rabi oscillation). Detailed analysis shows that for a "trapped Schr{ö}dinger's cat", the superposition of $|{\rm here} \rangle$ and $| {\rm there} \rangle $ is forbidden if $E D \gg 4π\hbar c$, and allowed if $E D \le 4π\hbar c$, where $D$ is the trap separation and $ E$ is the energy gap, which can be estimated with $ M v^2$. The model also constrains a "free Schr{ö}dinger's cat" to display double-slit interference if $pθD\ge 8\hbar$, where $p= Mv$, $θ$ is the angle spanned by the two trajectories, and $D$ is the slit separation. In contrast, this model sets no limit on the coherent length of massless photon, thus the arm of a Michelson interferometer can be arbitrarily long. The spontaneous collapse which we propose can occur for an isolated system, and parallels the decoherence induced by interaction with environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源