论文标题

量子态制备和层析成像的通用汇编

Universal compilation for quantum state preparation and tomography

论文作者

Hai, Vu Tuan, Ho, Le Bin

论文摘要

通用汇编是一个训练过程,可将可训练的统一编译到目标统一中,并为从量子动态模拟到具有深层压缩,设备基准测试,缓解量子误差等的最佳电路提供了巨大的潜在应用。在这里,我们提出了一种基于通用汇编的变分算法,用于低深度量子电路中量子状态的制备和断层扫描。我们将Fubini研究距离应用于各种基于梯度的优化器(包括量子自然梯度方法)下的可训练成本函数。我们评估了各种统一拓扑的性能以及不同优化者的训练性,以提高效率。实际上,我们在量子状态制备中处理不同的电路Ansatzes,包括基于线性和图形的Ansatzes,用于制备不同的纠缠目标状态,例如代表性GHz和W状态。我们还讨论了电路深度,贫瘠的高原,模型中的读数噪声以及误差缓解解决方案的效果。接下来,我们通过各种流行的电路Ansatzes评估量子状态断层扫描中的重建效率,并揭示了电路深度在稳健的忠诚度中的关键作用。结果与影子断层扫描方法相当,这是现场类似的方式。我们的工作表达了基于通用汇编的变分算法的足够能力,以最大程度地提高量子状态制备和断层扫描的效率。此外,它承诺在量子计量和传感中应用应用,并且适用于近期量子计算机,以验证电路保真度和各种量子计算任务。

Universal compilation is a training process that compiles a trainable unitary into a target unitary and it serves vast potential applications from quantum dynamic simulations to optimal circuits with deep-compressing, device benchmarking, quantum error mitigation, and so on. Here, we propose a universal compilation-based variational algorithm for the preparation and tomography of quantum states in low-depth quantum circuits. We apply the Fubini-Study distance to be a trainable cost function under various gradient-based optimizers, including the quantum natural gradient approach. We evaluate the performance of various unitary topologies and the trainability of different optimizers for getting high efficiency. In practice, we address different circuit ansatzes in quantum state preparation, including the linear and graph-based ansatzes for preparing different entanglement target states such as representative GHZ and W states. We also discuss the effect of the circuit depth, barren plateau, readout noise in the model, and the error mitigation solution. We next evaluate the reconstructing efficiency in quantum state tomography via various popular circuit ansatzes and reveal the crucial role of the circuit depth in the robust fidelity. The results are comparable with the shadow tomography method, a similar fashion in the field. Our work expresses the adequate capacity of the universal compilation-based variational algorithm to maximize the efficiency in the quantum state preparation and tomography. Further, it promises applications in quantum metrology and sensing and is applicable in the near-term quantum computers for verification of the circuits fidelity and various quantum computing tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源