论文标题

Q二项式定理的概括

A Generalization of q-Binomial Theorem

论文作者

Bao, Qi

论文摘要

通过使用刘的$ q $ - 派对差分方程理论,我们证明,如果几个变量中的分析功能满足$ q $ - 优势差分方程的系统,那么并且仅当它才能根据均质$(q,q,c)$ -Al-Salam-salam-Carlitz Polynomials进行扩展。作为一个应用程序,我们证明了$ c \ neq0 $和$ \ max \ {| cq |,| x | \} <1 $,\ begin {align*} \ sum_ {n = 0}^{\ infty} {\ infty} \ frac {(a; q)_n; q) } {(cq; q)_n} x^n =(ax/c; q)_ {\ infty} \ sum_ {n = 0}^{\ infty} \ frac {x^n} {(x^n} {(cq; q)定理。

By using Liu's $q$-partial differential equations theory, we prove that if an analytic function in several variables satisfies a system of $q$-partial differential equations, if and only if it can be expanded in terms of homogeneous $(q,c)$-Al-Salam-Carlitz polynomials. As an application, we proved that for $c\neq0$ and $\max \{|cq|,|x|\}<1$, \begin{align*} \sum_{n=0}^{\infty} \frac{ (a;q)_n }{(cq;q)_n}x^n=(ax/c;q)_{\infty} \sum_{n=0}^{\infty} \frac{x^n}{(cq;q)_n}, \end{align*} which is a generalization of famous $q$-binomial theorem or so-called Cauchy theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源