论文标题
非抗渗透性铁pnictide bafe $ _ {1.9-x} $ ni $ _ {0.1} $ cr $ _ {x} $ as $ _ {2} $
Nematic fluctuations in the non-superconducting iron pnictide BaFe$_{1.9-x}$Ni$_{0.1}$Cr$_{x}$As$_{2}$
论文作者
论文摘要
基于铁的超导体中电子列相的主要驱动力仍在争论中。在这里,我们报告了一项关于非持续性Pnictide铁系统BAFE $ _ {1.9-x} $ ni $ _ {0.1} $ cr $ _ {x} $ as $ _ {2} $ a vylet-transport,Angle-teams-resolved Photosements sipermoscoper(artermoscopy(Aremcopy)(artermoscoper)(artermoscoppy(artermospocy),以及Arifecopproy(artermocy),以及Arymoscoper(artermospocy),以及Arymoscoper(artermospoppy)(artecopoy),以及以前的中子衍射和传输测量结果表明,共线反铁磁性持续到$ x = 0.8 $,具有相似的néel温度$ t_n $,结构过渡温度$ t_s $左右32 K,但是电荷载体从电子类型转换为漏洞类型,大约$ x = $ x = $ 0.5。在这项研究中,我们发现平面电阻率各向异性也高度取决于CR掺杂和电荷载体的类型。虽然ARPES的测量表明,$ x = 0.05 $和$ x = 0.5 $化合物的轨道各向异性发作可能较弱,INS实验表明,低能源旋转激励各向异性的起始温度明显不同,这可能与自旋nematicity的能量规模相关。这些结果表明,FEMI表面上的Fe原子上局部旋转与流动电子之间的相互作用对于铁pnictides的列表波动至关重要,在该范围内,轨道的自由度可能与自旋自由度的行为不同,并且运输特性与旋转动力学密切相关。
The main driven force of the electronic nematic phase in iron-based superconductors is still under debate. Here, we report a comprehensive study on the nematic fluctuations in a non-superconducting iron pnictide system BaFe$_{1.9-x}$Ni$_{0.1}$Cr$_{x}$As$_{2}$ by electronic transport, angle-resolved photoemission spectroscopy (ARPES) and inelastic neutron scattering (INS) measurements. Previous neutron diffraction and transport measurements suggested that the collinear antiferromagnetism persists to $x=0.8$, with similar Néel temperature $T_N$ and structural transition temperature $T_s$ around 32 K, but the charge carriers change from electron type to hole type around $x=$ 0.5. In this study, we have found that the in-plane resistivity anisotropy also highly depends on the Cr dopings and the type of charge carriers. While ARPES measurements suggest possibly weak orbital anisotropy onset near $T_s$ for both $x=0.05$ and $x=0.5$ compounds, INS experiments reveal clearly different onset temperatures of low-energy spin excitation anisotropy, which is likely related to the energy scale of spin nematicity. These results suggest that the interplay between the local spins on Fe atoms and the itinerant electrons on Fermi surfaces is crucial to the nematic fluctuations of iron pnictides, where the orbital degree of freedom may behave differently from the spin degree of freedom, and the transport properties are intimately related to the spin dynamics.