论文标题
随机的三块拆分算法及其在量化深度神经网络的应用
A stochastic three-block splitting algorithm and its application to quantized deep neural networks
论文作者
论文摘要
深度神经网络(DNN)在各个领域取得了长足的进步。尤其是,量化的神经网络是一种有前途的技术,使DNN在资源有限的设备上兼容以进行内存和计算节省。在本文中,我们主要考虑一个具有三个块的非凸最小化模型来训练量化的DNN,并提出了一种新的随机三块交替最小化(StAM)算法来解决它。我们为Stam算法开发收敛理论,并获得具有最佳收敛速率$ \ MATHCAL {O}(ε^{ - 4})$的$ε$ - 稳定点。此外,我们将Stam算法应用于轻松的二进制重量来训练DNN。实验是在三个不同的网络结构上进行的,即VGG-11,VGG-16和RESNET-18。这些DNN分别使用CIFAR-10和CIFAR-100的两个不同数据集训练。我们将Stam算法与一些经典的有效算法进行比较,以训练量化的神经网络。测试精度表明Stam算法在训练松弛的二进制量化DNNS中的有效性。
Deep neural networks (DNNs) have made great progress in various fields. In particular, the quantized neural network is a promising technique making DNNs compatible on resource-limited devices for memory and computation saving. In this paper, we mainly consider a non-convex minimization model with three blocks to train quantized DNNs and propose a new stochastic three-block alternating minimization (STAM) algorithm to solve it. We develop a convergence theory for the STAM algorithm and obtain an $ε$-stationary point with optimal convergence rate $\mathcal{O}(ε^{-4})$. Furthermore, we apply our STAM algorithm to train DNNs with relaxed binary weights. The experiments are carried out on three different network structures, namely VGG-11, VGG-16 and ResNet-18. These DNNs are trained using two different data sets, CIFAR-10 and CIFAR-100, respectively. We compare our STAM algorithm with some classical efficient algorithms for training quantized neural networks. The test accuracy indicates the effectiveness of STAM algorithm for training relaxed binary quantization DNNs.