论文标题
计算MathPartner中的积分
Calculation of Integrals in MathPartner
论文作者
论文摘要
我们介绍了计算确定和不确定积分的数学服务提供的可能性。 MathPartner包含Risch算法的软件实现,并为用户提供了计算基本功能抗动力的能力。可以使用数值算法来计算某些积分,包括不当积分。在这种情况下,每个用户都有能够指示他需要了解积分价值的所需准确性。我们突出显示了特殊功能,使我们能够计算完整的椭圆积分。这些包括用于计算算术几何平均值和几何谐波平均值的函数,这使我们能够计算第一类的完整椭圆积分。该集合还包括由Semjon Adlaj提出的修改算术几何平均值,该平均值使我们能够计算第二种的完整椭圆积分以及椭圆形的圆周。 Lagutinski算法特别有趣。对于双变量合理函数领域中的差异化,可以决定是否存在理性积分。该算法基于计算Lagutinski的决定因素。 Mikhail Lagutinski(1871--1915)曾在乌克兰的哈尔基夫(Kharkiv)工作。今年,我们将庆祝他的150周年。
We present the possibilities provided by the MathPartner service of calculating definite and indefinite integrals. MathPartner contains software implementation of the Risch algorithm and provides users with the ability to compute antiderivatives for elementary functions. Certain integrals, including improper integrals, can be calculated using numerical algorithms. In this case, every user has the ability to indicate the required accuracy with which he needs to know the numerical value of the integral. We highlight special functions allowing us to calculate complete elliptic integrals. These include functions for calculating the arithmetic-geometric mean and the geometric-harmonic mean, which allow us to calculate the complete elliptic integrals of the first kind. The set also includes the modified arithmetic-geometric mean, proposed by Semjon Adlaj, which allows us to calculate the complete elliptic integrals of the second kind as well as the circumference of an ellipse. The Lagutinski algorithm is of particular interest. For given differentiation in the field of bivariate rational functions, one can decide whether there exists a rational integral. The algorithm is based on calculating the Lagutinski determinant. Mikhail Lagutinski (1871--1915) had worked at Kharkiv (Ukraine). This year we are celebrating his 150th anniversary.