论文标题

在某些结果的Schur类型公式

On some resultants formulas of Schur type

论文作者

Turaj, Joanna

论文摘要

令$(r_ {a,n}(x))_ {n \ in \ mathbb {n}} $是一系列多项式的序列,带有来自字段$ k $的系数,使重复关系$ r_ {a,n}(a,n}(a,n}(x)(x)= \ sum_ = \ sum_ {|α{|α| \ leq m m} t_{α,n}(x)\textbf{r}_{A,n}^α(x)$ of order $d+1 \in \mathbb{N}_{+}$, where $t_{α,n} \in K[x]$, $m \in \mathbb{N}_{+}$ are fixed, $α\ in \ mathbb {n}^{d+1} $,$ |α| =α_0 + \ \ ldots +α_d$和$ \ textbf {r} _ {a,n}^α(x)= r_ {a,n-1}^{α_0}(x)r_ {x)r_ {a,n-2}^{a,n-2}^{α_1}(x)我们表明,在对初始多项式的轻度假设下,$ r_ {a,0},\ ldots,r_ {a,d} $和系数$ t_ {α,n} $,我们可以为结果$ \ text {res}(r_ n} r_ {a,n},r_ r_ {a,n-1-1}提供结果$ \ text {res} {res} {res}(r_ sexterals $ \ \ \ \ \ feftermials。我们的结果概括了Ulas关于案例的最新结果$ M = 1 $和$ d = 1 $。

Let $(r_{A,n}(x))_{n \in \mathbb{N}}$ be a sequence of polynomials with coefficients from a field $K$ satisfying the recurrence relation $r_{A,n}(x)= \sum_{|α|\leq m} t_{α,n}(x)\textbf{r}_{A,n}^α(x)$ of order $d+1 \in \mathbb{N}_{+}$, where $t_{α,n} \in K[x]$, $m \in \mathbb{N}_{+}$ are fixed, $α\in \mathbb{N}^{d+1}$, $|α| = α_0 + \ldots+α_d$ and $\textbf{r}_{A,n}^α(x)=r_{A,n-1}^{α_0}(x)r_{A,n-2}^{α_1}(x)\cdots r_{A,n-d-1}^{α_d}(x).$ We show that under mild assumptions on the initial polynomials $r_{A,0}, \ldots, r_{A,d}$ and the coefficients $t_{α,n}$, we can give the expression for the resultant $\text{Res}(r_{A,n}, r_{A,n-1})$. Our results generalize recent result of Ulas concerning the case $m=1$ and $d=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源