论文标题

GRM:视觉位置检索的梯度整流模块

GRM: Gradient Rectification Module for Visual Place Retrieval

论文作者

Lei, Boshu, Ding, Wenjie, Qiao, Limeng, Qiu, Xi

论文摘要

Visual Place检索旨在在数据库中搜索描绘与查询图像相似的位置的图像。但是,由网络编码的全球描述符通常属于低维主空间,这对检索性能有害。我们首先分析了这种现象的原因,指出这是由于描述符梯度的分布降解所致。然后,我们提出梯度整流模块(GRM)来减轻此问题。 GRM是在最后的合并层之后附加的,可以将梯度纠正到主空间的互补空间。使用GRM,鼓励网络在整个空间中更均匀地生成描述符。最后,我们在多个数据集上进行实验,并将我们的方法推广到原型学习框架下的分类任务。

Visual place retrieval aims to search images in the database that depict similar places as the query image. However, global descriptors encoded by the network usually fall into a low dimensional principal space, which is harmful to the retrieval performance. We first analyze the cause of this phenomenon, pointing out that it is due to degraded distribution of the gradients of descriptors. Then, we propose Gradient Rectification Module(GRM) to alleviate this issue. GRM is appended after the final pooling layer and can rectify gradients to the complementary space of the principal space. With GRM, the network is encouraged to generate descriptors more uniformly in the whole space. At last, we conduct experiments on multiple datasets and generalize our method to classification task under prototype learning framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源