论文标题
$ l^2 $ - 复合物和扭曲的谐音谐波捆绑包
$L^2$-complexes and twistor complexes of tame harmonic bundles
论文作者
论文摘要
令$ f:x \ y $为复杂流形的形态。假设$ x $是kähler歧管。令$(\ MATHCAL {t},\ MATHCAL {S})$为常规的极化纯曲折$ \ MATHCAL {D} $ - $ x $上的重量$ W $的模块,其支持超过$ y $。我们证明了$(\ Mathcal {t},\ Mathcal {s})$的硬性lefschetz定理。作为关键步骤之一,我们获得了Kashiwara和Kawai定理的曲折版本,介绍了霍奇结构极化变化的交点复合物上的霍奇结构。
Let $f:X\to Y$ be a morphism of complex manifolds. Suppose that $X$ is a Kähler manifold. Let $(\mathcal{T},\mathcal{S})$ be a regular polarized pure twistor $\mathcal{D}$-module of weight $w$ on $X$ whose support is proper over $Y$. We prove the Hard Lefschetz Theorem for the push-forward of $(\mathcal{T},\mathcal{S})$ by $f$. As one of the key steps, we obtain the twistor version of a theorem of Kashiwara and Kawai about the Hodge structure on the intersection complex of polarized variation of Hodge structure.