论文标题

关于伪五岩半群中的最低理想

On minimal ideals in pseudo-finite semigroups

论文作者

Gould, Victoria, Miller, Craig, Quinn-Gregson, Thomas, Ruskuc, Nik

论文摘要

如果有限的套装$ u \ u \ subseteq s \ times s $可以产生通用的权利一致性,则据说semigroup $ s $是正确的伪限制,并且由于$ u $中的$ u $的结果,在s \ times s $中,任意对$(s,t)的派生的长度限制了。本文探讨了正确的伪限制半群中最小理想的存在和性质。继续主题始于Dandan等人的早期作品,我们表明,在几个自然类的单体类别中,右伪填充性意味着存在完全简单的最低理想。正统的单粒子,完全规则的单体和右可逆的单体,其中包括所有交换性单体。我们还表明,某些其他条件暗示了最小理想的存在,这不必完全简单。值得注意的是,对于绿色的预订$ \ leq _ {\ Mathcal {l}} $或$ \ leq _ {\ Mathcal {J}} $的情况,绿色的预订$ \ leq _ {\ MathCal {l}} $是这种情况,这就是这种情况。最后,我们建立了许多没有最低理想的伪五岩单型示例。我们开发了一种明确的结构,该结构产生了具有其他所需属性的示例,例如规律性或$ \ Mathcal {J} $ - Triviality。

A semigroup $S$ is said to be right pseudo-finite if the universal right congruence can be generated by a finite set $U\subseteq S\times S$, and there is a bound on the length of derivations for an arbitrary pair $(s,t)\in S\times S$ as a consequence of those in $U$. This article explores the existence and nature of a minimal ideal in a right pseudo-finite semigroup. Continuing the theme started in an earlier work by Dandan et al., we show that in several natural classes of monoids, right pseudo-finiteness implies the existence of a completely simple minimal ideal. This is the case for orthodox monoids, completely regular monoids and right reversible monoids, which include all commutative monoids. We also show that certain other conditions imply the existence of a minimal ideal, which need not be completely simple; notably, this is the case for semigroups in which one of the Green's pre-orders $\leq_{\mathcal{L}}$ or $\leq_{\mathcal{J}}$ is left compatible with multiplication. Finally, we establish a number of examples of pseudo-finite monoids without a minimal ideal. We develop an explicit construction that yields such examples with additional desired properties, for instance, regularity or $\mathcal{J}$-triviality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源