论文标题

通过重复使用数据快速迭代正则化

Fast iterative regularization by reusing data

论文作者

Vega, Cristian, Molinari, Cesare, Rosasco, Lorenzo, Villa, Silvia

论文摘要

离散的反问题对应于数据中稳定的方式求解方程系统。执行唯一性并选择有意义的解决方案的典型方法是引入常规器。尽管对于大多数应用,正常器是凸,但在许多情况下,它并不光滑或强烈凸。在本文中,我们提出并研究了基于原始偶算法的两种新的迭代正则化方法有效地解决反问题。在无噪声的情况下,我们的分析为拉格朗日和可行性差距提供了收敛率。在嘈杂的情况下,它通过理论保证提供了稳定的范围和早期的规则。我们工作的主要新颖性是剥削有关解决方案集的一些先验知识,即冗余信息。更确切地说,我们证明线性系统可以在迭代中多次使用。尽管这个想法很简单,但我们表明该过程在数值应用中带来了令人惊讶的优势。我们讨论了利用冗余信息的各种方法,这些方法同时符合我们的假设并在实施中灵活。最后,我们使用数值模拟来说明我们的理论发现,以通过总变化来进行稳健的稀疏恢复和图像重建。我们确认了提出的程序的效率,将结果与最新方法进行了比较。

Discrete inverse problems correspond to solving a system of equations in a stable way with respect to noise in the data. A typical approach to enforce uniqueness and select a meaningful solution is to introduce a regularizer. While for most applications the regularizer is convex, in many cases it is not smooth nor strongly convex. In this paper, we propose and study two new iterative regularization methods, based on a primal-dual algorithm, to solve inverse problems efficiently. Our analysis, in the noise free case, provides convergence rates for the Lagrangian and the feasibility gap. In the noisy case, it provides stability bounds and early-stopping rules with theoretical guarantees. The main novelty of our work is the exploitation of some a priori knowledge about the solution set, i.e. redundant information. More precisely we show that the linear systems can be used more than once along the iteration. Despite the simplicity of the idea, we show that this procedure brings surprising advantages in the numerical applications. We discuss various approaches to take advantage of redundant information, that are at the same time consistent with our assumptions and flexible in the implementation. Finally, we illustrate our theoretical findings with numerical simulations for robust sparse recovery and image reconstruction through total variation. We confirm the efficiency of the proposed procedures, comparing the results with state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源