论文标题

Alperin-McKay对应关系的度划分性

Degree divisibility in Alperin-McKay correspondences

论文作者

Martìnez, J. Miquel, Rossi, Damiano

论文摘要

令P为Prime,b是有限的G和B的P块,其Brauer通讯员。根据Alperin-Mckay的猜想,在B的高度为零的不可还原普通特征与B的不可还原普通特征之间存在两者。在本文中,我们表明,每当G可溶解G时,都可以找到普通字符和布鲁尔字符的两次遗憾,并且具有与字符度的可划分性兼容的附加特性。在这种情况下,我们还表明,B的维度划分为B的维度。

Let p be a prime, B a p-block of a finite group G and b its Brauer correspondent. According to the Alperin-McKay Conjecture, there exists a bijection between the set of irreducible ordinary characters of height zero of B and those of b. In this paper, we show that whenever G is p-solvable such a bijection can be found, both for ordinary and Brauer characters, with the additional property of being compatible with divisibility of character degrees. In this case, we also show that the dimension of b divides the dimension of B.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源