论文标题

量子计算机的魔术资源的可扩展度量

Scalable measures of magic resource for quantum computers

论文作者

Haug, Tobias, Kim, M. S.

论文摘要

非稳定器或魔术资源的特征是准备量子状态所需的非克利福德操作的数量。它是量子计算的关键资源,也是量子优势的必要条件。但是,量化魔术资源超出了几个量子,这是一个重大挑战。在这里,我们为纯量子状态介绍了有效的魔术资源量度,其采样成本与量子数的数量无关。我们的方法使用了两个状态副本上的铃铛测量结果,我们在实验中实现了铃铛,并使用无需成本的错误缓解方案。我们显示了经典的可模拟稳定剂状态向IONQ量子计算机上棘手的量子状态的过渡。对于应用,即使在存在实验噪声的情况下,我们也有效地以低测量成本来区分稳定剂和非稳定状态。此外,我们提出了一种跨量子算法,以通过移位规则最大化我们的度量。即使对于高度表达的变化电路,我们的算法也可能没有贫瘠的高原。最后,我们在实验上证明了稳定器Rényi熵以及Wallach-Meyer纠缠措施的铃铛测量方案。我们的结果铺平了理解量子计算机,量子模拟器和量子多体系统的非古典功率的方式。

Non-stabilizerness or magic resource characterizes the amount of non-Clifford operations needed to prepare quantum states. It is a crucial resource for quantum computing and a necessary condition for quantum advantage. However, quantifying magic resource beyond a few qubits has been a major challenge. Here, we introduce efficient measures of magic resource for pure quantum states with a sampling cost that is independent of the number of qubits. Our method uses Bell measurements over two copies of a state, which we implement in experiment together with a cost-free error mitigation scheme. We show the transition of classically simulable stabilizer states into intractable quantum states on the IonQ quantum computer. For applications, we efficiently distinguish stabilizer and non-stabilizer states with low measurement cost even in the presence of experimental noise. Further, we propose a variational quantum algorithm to maximize our measure via the shift-rule. Our algorithm can be free of barren plateaus even for highly expressible variational circuits. Finally, we experimentally demonstrate a Bell measurement protocol for the stabilizer Rényi entropy as well as the Wallach-Meyer entanglement measure. Our results pave the way to understand the non-classical power of quantum computers, quantum simulators and quantum many-body systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源