论文标题

在使用平坦的方向敏感探测器的光声断层扫描中学习无形

On Learning the Invisible in Photoacoustic Tomography with Flat Directionally Sensitive Detector

论文作者

Pan, Bolin, Betcke, Marta M.

论文摘要

在带有扁平传感器的光声断层扫描(PAT)中,我们通常会遇到两种类型的有限数据。首先是由于使用有限的传感器而引起的,如果感兴趣的区域相对于传感器或远离传感器,则尤其可感知。在本文中,我们专注于第二种是由传感器对传入的波前方向的敏感性变化引起的,该方向可以用二进制模型,即通过灵敏度锥进行模型。这种可见性条件在傅立叶域中导致图像和数据都限制为弓形领带,类似于对应于前向操作员范围的弓形。图像和数据域中的可见波纹线与波前映射有关。我们适应了楔形限制的孔值分解,以前提出了用于表示完整PAT数据的表示,以分离图像中的可见和不可见的波前。我们将快速近似运算符与量身定制的深神经网络体系结构结合到有效学习的重建方法中,从而对可见系数进行重建,并且从相似数据的训练集中学到了隐形系数。

In photoacoustic tomography (PAT) with flat sensor, we routinely encounter two types of limited data. The first is due to using a finite sensor and is especially perceptible if the region of interest is large relative to the sensor or located farther away from the sensor. In this paper, we focus on the second type caused by a varying sensitivity of the sensor to the incoming wavefront direction which can be modelled as binary i.e. by a cone of sensitivity. Such visibility conditions result, in the Fourier domain, in a restriction of both the image and the data to a bow-tie, akin to the one corresponding to the range of the forward operator. The visible wavefrontsets in image and data domains, are related by the wavefront direction mapping. We adapt the wedge restricted Curvelet decomposition, we previously proposed for the representation of the full PAT data, to separate the visible and invisible wavefronts in the image. We optimally combine fast approximate operators with tailored deep neural network architectures into efficient learned reconstruction methods which perform reconstruction of the visible coefficients and the invisible coefficients are learned from a training set of similar data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源