论文标题

FedCl:联合对比度学习以保护隐私建议

FedCL: Federated Contrastive Learning for Privacy-Preserving Recommendation

论文作者

Wu, Chuhan, Wu, Fangzhao, Qi, Tao, Huang, Yongfeng, Xie, Xing

论文摘要

对比度学习被广泛用于推荐模型学习,其中选择代表性和信息性负样本至关重要。现有方法通常集中在集中数据上,其中丰富和高质量的负样本易于获取。但是,集中式用户数据存储和开发可能会导致隐私风险和疑虑,而单个客户端上的分散用户数据可能太稀疏,并且有偏见,无法进行准确的对比度学习。在本文中,我们提出了一种名为FedCl的联合对比度学习方法,用于保存隐私建议,该方法可以利用高质量的负面样本来对有效的模型培训,并受到隐私的保护。我们首先通过每个客户端上的本地模型从本地用户数据中推断出用户的嵌入,然后将其发送到局部差分隐私(LDP)之前,然后将其发送到中央服务器进行硬性负面采样。由于单个用户嵌入由于LDP引起的噪音很重,因此我们建议将用户嵌入服务器上的用户嵌入以减轻噪声的影响,群集质心用于从项目池中检索硬负样本。这些硬负样本将交付给用户客户端,并与来自本地数据的观察到的负样本以及由用于联合模型培训的阳性样本构成的批处理负面因素。在四个基准数据集上进行的广泛实验表明,FedCl可以以隐私的方式赋予各种推荐方法。

Contrastive learning is widely used for recommendation model learning, where selecting representative and informative negative samples is critical. Existing methods usually focus on centralized data, where abundant and high-quality negative samples are easy to obtain. However, centralized user data storage and exploitation may lead to privacy risks and concerns, while decentralized user data on a single client can be too sparse and biased for accurate contrastive learning. In this paper, we propose a federated contrastive learning method named FedCL for privacy-preserving recommendation, which can exploit high-quality negative samples for effective model training with privacy well protected. We first infer user embeddings from local user data through the local model on each client, and then perturb them with local differential privacy (LDP) before sending them to a central server for hard negative sampling. Since individual user embedding contains heavy noise due to LDP, we propose to cluster user embeddings on the server to mitigate the influence of noise, and the cluster centroids are used to retrieve hard negative samples from the item pool. These hard negative samples are delivered to user clients and mixed with the observed negative samples from local data as well as in-batch negatives constructed from positive samples for federated model training. Extensive experiments on four benchmark datasets show FedCL can empower various recommendation methods in a privacy-preserving way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源