论文标题

推理中的注意:数据集,分析和建模

Attention in Reasoning: Dataset, Analysis, and Modeling

论文作者

Chen, Shi, Jiang, Ming, Yang, Jinhui, Zhao, Qi

论文摘要

尽管注意力在深度神经网络中越来越流行,以解释和提高模型的性能,但很少有工作研究了注意力如何完成任务以及是否合理。在这项工作中,我们提出了一个以推理能力(AIR)框架的关注,该框架利用注意力来理解和改进导致任务结果的过程。我们首先根据一系列原子推理操作来定义评估度量,从而实现了考虑推理过程的定量测量。然后,我们收集人类的眼睛跟踪并回答正确性数据,并分析各种机器和人类注意力机制的推理能力以及它们如何影响任务绩效。为了提高视觉问题回答模型的关注和推理能力,我们建议在推理过程中逐步学习注意力的学习,并区分正确和不正确的注意力模式。我们证明了拟议框架在分析和建模注意力方面具有更好的推理能力和任务绩效的有效性。代码和数据可在https://github.com/szzexpoi/Air上获得

While attention has been an increasingly popular component in deep neural networks to both interpret and boost the performance of models, little work has examined how attention progresses to accomplish a task and whether it is reasonable. In this work, we propose an Attention with Reasoning capability (AiR) framework that uses attention to understand and improve the process leading to task outcomes. We first define an evaluation metric based on a sequence of atomic reasoning operations, enabling a quantitative measurement of attention that considers the reasoning process. We then collect human eye-tracking and answer correctness data, and analyze various machine and human attention mechanisms on their reasoning capability and how they impact task performance. To improve the attention and reasoning ability of visual question answering models, we propose to supervise the learning of attention progressively along the reasoning process and to differentiate the correct and incorrect attention patterns. We demonstrate the effectiveness of the proposed framework in analyzing and modeling attention with better reasoning capability and task performance. The code and data are available at https://github.com/szzexpoi/AiR

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源