论文标题

纠缠熵中通用术语的不稳定性

Instability of Universal Terms in the Entanglement Entropy

论文作者

Huerta, Marina, van der Velde, Guido

论文摘要

在过去的几年中,对对称性在纠缠熵方面的作用进行了广泛的探索,并揭示了与量子场理论的代数结构有着深远的联系。最近,发现对纠缠熵的某些普遍贡献和相互信息可能在具有广义对称性的理论中是非唯一的。在这里,我们在$(2+1)$旋转对称区域的$(2+1)$尺寸的特定情况下详细研究了此问题。在此设置中,问题可以在尺寸上降低到半线。我们发现,麦克斯韦场的减少问题与减少标量的自由场之间的唯一区别来自傅立叶角$ n = 0 $模式。这种简化使我们能够明确检查许多具有损坏全局对称性模型的问题。也就是说,我们显然表明加性代数破坏了二元性,并挑出了负责该特性失败的非本地运算符。更有趣的是,我们提出了具体的晶格实现,这些晶格实现确认磁盘的麦克斯韦纠缠熵的对数“通用”项取决于代数分配的细节。这种歧义阻碍了具有广义对称性模型的可能拓扑贡献的识别,并破坏了其普遍特征。我们进一步计算两个几乎互补同心磁盘的麦克斯韦共同信息。我们以对数依赖性获得了预期的通用贡献,并检查与熵不同,这是稳定的。因此,这支持相互信息作为适当的探针,以了解添加性二元性破坏性以及随之而来的普遍拓扑贡献。

The role of symmetries in what concerns entanglement entropy has been extensively explored in the last years and revealed a profound connection with the quantum field theory's algebraic structure. Recently, it was found that some universal contributions to the entanglement entropy and mutual information may be non uniquely defined in theories with generalized symmetries. Here, we study this issue in detail in the particular case of the entanglement entropy of the Maxwell theory in $(2+1)$ dimensions for rotationally symmetric regions. In this setup, the problem can be dimensionally reduced to a half-line. We find that the only difference between the reduced problem for the Maxwell field and the reduced scalar free field stems from the Fourier angular $n=0$ mode. This simplification allows us to check explicitly the many issues that characterize models with broken global symmetries. Namely, we manifestly show that the additive algebras break Haag duality, and single out the non-local operators which are responsible for the failure of this property. More interestingly, we present concrete lattice realizations that confirm that the logarithmic "universal" term of the Maxwell entanglement entropy for disks depends on the details of the algebra assignation. This ambiguity hinders the identification of possible topological contributions characteristic of models with generalized symmetries and tarnishes its universal character. We further calculate the Maxwell mutual information for two nearly complementary concentric disks. We obtain the expected universal contribution with a log-log dependence and check that, unlike entropy, this is stable. Accordingly, this supports mutual information as the appropriate probe to sense additivity-duality breaking and the consequent universal topological contributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源