论文标题
两个低复杂性DOA估计器用于大规模/超质量MIMO接收阵列
Two Low-complexity DOA Estimators for Massive/Ultra-massive MIMO Receive Array
论文作者
论文摘要
基于特征分解的方向发现使用大型/超大规模的完全数字阵列的方法会导致高或超高的复杂性。为了解决复杂性难题,在本文中,提出了三个低复杂性估计器:分区的亚阵列自动相关组合(PSAC),分区的子阵列互相关组合(PSCC)和功率迭代最大相关连续的convex近似值(PI-MAX-CSCA)。与常规的无分段方向查找方法(例如根多信号分类(root-music),在PSAC方法中,天线的总组合都被同样分配到天线的子集中,称为子阵列,每个子阵列都执行独立的DOA估计,并且所有DOA估计都相当地组合以给出最终估计。为了获得更好的性能,在PSCC方法中进一步利用子阵列之间的互相关,以在自动相关的帮助下实现近刺激性-RAO下限(CRLB)性能。为了进一步降低复杂性,在PI-MAX-CSCA方法中,使用所有子阵列的一部分来进行初始粗糙方向测量(ICDM),采用了功率迭代方法来计算通过使用ICDM和SV通过最大correelation consection consection Solide Solide Solide contection soldex contection soldex contection condection-conly contection toeploly tode condection contection toeplolative corlimation contection soldex soldex soldex soldex soldex soldex contection迭代方法。仿真结果表明,随着天线数量大规模的数量,所提出的三种方法可以比传统的根摩西群岛实现巨大的复杂性降低。特别是,PSCC和PI-MAX-CSCA可以到达CRLB,而PSAC则显示出大量的性能损失。
Eigen-decomposition-based direction finding methods of using large-scale/ultra-large-scale fully-digital receive antenna arrays lead to a high or ultra-high complexity. To address the complexity dilemma, in this paper, three low-complexity estimators are proposed: partitioned subarray auto-correlation combining (PSAC), partitioned subarray cross-correlation combining (PSCC) and power iteration max correlation successive convex approximation (PI-Max-CSCA). Compared with the conventional no-partitioned direction finding method like root multiple signal classification (Root-MUSIC), in the PSAC method, the total set of antennas are equally partitioned into subsets of antennas, called subarrays, each subarray performs independent DOA estimation, and all DOA estimates are coherently combined to give the final estimation. For a better performance, the cross-correlation among sub-arrays is further exploited in the PSCC method to achieve the near-Cramer-Rao lower bound (CRLB) performance with the help of auto-correlation. To further reduce the complexity, in the PI-Max-CSCA method, using a fraction of all subarrays to make an initial coarse direction measurement (ICDM), the power iterative method is adopted to compute the more precise steering vector (SV) by exploiting the total array, and a more accurate DOA value is found using ICDM and SV through the maximum correlation method solved by successive convex approximation. Simulation results show that as the number of antennas goes to large-scale, the proposed three methods can achieve a dramatic complexity reduction over conventional Root-MUISC. Particularly, the PSCC and PI-Max-CSCA can reach the CRLB while the PSAC shows a substantial performance loss.