论文标题

$κ$-PoincaréHopf代数的小组理论描述

A group theoretic description of the $κ$-Poincaré Hopf algebra

论文作者

Arzano, Michele, Kowalski-Glikman, Jerzy

论文摘要

在文献中众所周知,与$κ$-Poincaré代数相关的动量空间由Lie Group $ \ Mathsf {a} \ Mathsf {n}(3)$描述。在这封信中,我们表明,可以从$ \ mathsf {so(1,4)} $ group的iWasawa分解开始。

It is well known in the literature that the momentum space associated to the $κ$-Poincaré algebra is described by the Lie group $\mathsf{A}\mathsf{N}(3)$. In this letter we show that the full $κ$-Poincaré Hopf algebra structure can be obtained from rather straightforward group-theoretic manipulations starting from the Iwasawa decomposition of the of the $\mathsf{SO(1,4)}$ group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源