论文标题
3D双曲线Navier-Stokes方程在细条上:Gevrey空间中的全球供应良好和静静力限制
3D hyperbolic Navier-Stokes equations in a thin strip: global well-posedness and hydrostatic limit in Gevrey space
论文作者
论文摘要
我们考虑三维各向异性Naver-Stokes方程的双曲版本,其静水量限制是双曲线prandtl类型方程。当初始数据属于带有索引2的Gevrey函数空间时,我们证明了两个系统的全球时间存在和唯一性以及静水限制。证明是基于直接能量方法来观察系统中的阻尼效应。
We consider the hyperbolic version of three-dimensional anisotropic Naver-Stokes equations in a thin strip and its hydrostatic limit that is a hyperbolic Prandtl type equations. We prove the global-in-time existence and uniqueness for the two systems and the hydrostatic limit when the initial data belong to the Gevrey function space with index 2. The proof is based on a direct energy method by observing the damping effect in the systems.