论文标题

朝着有效的单图像去悬而未决

Towards Efficient Single Image Dehazing and Desnowing

论文作者

Ye, Tian, Chen, Sixiang, Liu, Yun, Chen, Erkang, Li, Yuche

论文摘要

从图像中消除雨水,雾气和雪等不利天气条件是一个具有挑战性的问题。尽管针对特定条件的当前恢复算法取得了令人印象深刻的进步,但它的灵活性不足以应对各种降解类型。我们提出了一个名为DAN-NET(降解自适应神经网络)的高效而紧凑的图像恢复网络,以解决此问题,该问题由一个具有自适应封闭神经的多个紧凑型专家网络组成。一个专家网络有效地解决了依靠紧凑型建筑和三个新颖组成部分的讨厌冬季场景中的特定退化。根据专家策略的混合,Dan-Net捕获了每个输入图像的退化信息,以适应特定于任务专家网络的输出,以消除各种不良的冬季天气条件。具体而言,它采用轻巧的自适应封闭式神经网络来估计输入图像的门控注意图,而具有相同拓扑的不同特定于任务的专家则共同派遣以处理降级的图像。这种新型的图像恢复管道可有效,有效地处理不同类型的恶劣天气场景。它也享有协调提升的好处,在协调的情况下,整个网络的表现都优于每个专家而无需协调的专家。 广泛的实验表明,所提出的方式的表现优于最新的图像质量单任务方法,并且具有更好的推理效率。此外,我们收集了第一个现实世界中的冬季现场数据集来评估冬季图像恢复方法,其中包含冬季拍摄的各种朦胧和雪地图像。数据集和源代码都将公开可用。

Removing adverse weather conditions like rain, fog, and snow from images is a challenging problem. Although the current recovery algorithms targeting a specific condition have made impressive progress, it is not flexible enough to deal with various degradation types. We propose an efficient and compact image restoration network named DAN-Net (Degradation-Adaptive Neural Network) to address this problem, which consists of multiple compact expert networks with one adaptive gated neural. A single expert network efficiently addresses specific degradation in nasty winter scenes relying on the compact architecture and three novel components. Based on the Mixture of Experts strategy, DAN-Net captures degradation information from each input image to adaptively modulate the outputs of task-specific expert networks to remove various adverse winter weather conditions. Specifically, it adopts a lightweight Adaptive Gated Neural Network to estimate gated attention maps of the input image, while different task-specific experts with the same topology are jointly dispatched to process the degraded image. Such novel image restoration pipeline handles different types of severe weather scenes effectively and efficiently. It also enjoys the benefit of coordinate boosting in which the whole network outperforms each expert trained without coordination. Extensive experiments demonstrate that the presented manner outperforms the state-of-the-art single-task methods on image quality and has better inference efficiency. Furthermore, we have collected the first real-world winter scenes dataset to evaluate winter image restoration methods, which contains various hazy and snowy images snapped in winter. Both the dataset and source code will be publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源