论文标题

核心框图像识别及其通过新的增强技术的改进

Core Box Image Recognition and its Improvement with a New Augmentation Technique

论文作者

Baraboshkin, E. E., Demidov, A. E., Orlov, D. M., Koroteev, D. A.

论文摘要

自动化全孔岩心图像分析(描述,颜色,属性分布等)的大多数方法都是基于单独的核心列分析的。由于为每个核心列获得图像所花费的大量时间,通常将核心成像在盒子中。这项工作提出了一种创新方法和算法,用于从核心框中提取核心列。核心盒成像的条件可能会大不相同。对于机器学习算法而言,这种差异是灾难性的,该算法需要一个描述所有可能数据变化的大数据集。尽管如此,此类图像仍具有一些标准功能 - 盒子和核心。因此,我们可以通过在本工作中描述的独特增强来模拟不同的环境。它称为模板状增强(TLA)。该方法在各种环境上进行了描述和测试,并根据对“传统”数据以及传统数据和TLA数据的混合的算法进行了比较。接受TLA数据训练的算法提供了更好的指标,并且可以在大多数新图像上检测Core,这与未经TLA的数据训练的算法不同。在自动核心描述中实现的核心列提取的算法将核心盒处理加速20倍。

Most methods for automated full-bore rock core image analysis (description, colour, properties distribution, etc.) are based on separate core column analyses. The core is usually imaged in a box because of the significant amount of time taken to get an image for each core column. The work presents an innovative method and algorithm for core columns extraction from core boxes. The conditions for core boxes imaging may differ tremendously. Such differences are disastrous for machine learning algorithms which need a large dataset describing all possible data variations. Still, such images have some standard features - a box and core. Thus, we can emulate different environments with a unique augmentation described in this work. It is called template-like augmentation (TLA). The method is described and tested on various environments, and results are compared on an algorithm trained on both 'traditional' data and a mix of traditional and TLA data. The algorithm trained with TLA data provides better metrics and can detect core on most new images, unlike the algorithm trained on data without TLA. The algorithm for core column extraction implemented in an automated core description system speeds up the core box processing by a factor of 20.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源