论文标题
氢键动力学和振动光谱的量子计算
Quantum Computation of Hydrogen Bond Dynamics and Vibrational Spectra
论文作者
论文摘要
计算化学系统的可观察性能通常在经典上是棘手的,并且被广泛认为是量子信息处理的有希望的应用。然而,由于其非谐势能景观,使用量子硬件研究使用量子硬件是自然界中最常见和最重要的化学系统之一。在这里,我们介绍了使用量子逻辑来解决氢键系统和更多通用化学动力学问题的框架。我们在实验上使用QSCOUT离子陷阱量子计算机展示了我们方法的原则实例,在该实验中,我们通过实验驱动离子陷阱系统,以模仿氢键中共享 - 蛋白的量子波袋。在实验共享 - 普罗顿波袋的实验创建之后,我们提取诸如其时间依赖的空间投影及其特征性振动频率诸如光谱准确性(3.3 cm $^{ - 1} $ vaveNumbers),相当于> 99.9%的保真度)。我们的方法引入了一种新的范式,用于研究分子的量子化学动力学和振动光谱,当与现有电子结构的现有算法结合使用时,将开辟了以前所未有的精度来描述复杂分子系统完整行为的可能性。
Calculating the observable properties of chemical systems is often classically intractable and is widely viewed as a promising application of quantum information processing. Yet one of the most common and important chemical systems in nature - the hydrogen bond - has remained a challenge to study using quantum hardware on account of its anharmonic potential energy landscape. Here, we introduce a framework for solving hydrogen-bond systems and more generic chemical dynamics problems using quantum logic. We experimentally demonstrate a proof-of-principle instance of our method using the QSCOUT ion-trap quantum computer, in which we experimentally drive the ion-trap system to emulate the quantum wavepacket of the shared-proton within a hydrogen bond. Following the experimental creation of the shared-proton wavepacket, we then extract measurement observables such as its time-dependent spatial projection and its characteristic vibrational frequencies to spectroscopic accuracy (3.3 cm$^{-1}$ wavenumbers, corresponding to > 99.9% fidelity). Our approach introduces a new paradigm for studying the quantum chemical dynamics and vibrational spectra of molecules, and when combined with existing algorithms for electronic structure, opens the possibility to describe the complete behavior of complex molecular systems with unprecedented accuracy.