论文标题
$ C^*$ - 代数的模块张贴地图
Module tensorizing maps on $ C^*$-algebras
论文作者
论文摘要
对于$ c^*$ - 代数$ \ mathfrak {a},a $和$ b $,其中$ a $ a $ a $ a $ a $ a $ a $ \ mathfrak {a} $ bimodules具有兼容的动作,我们认为amalgamated $ \ m mathfrak {a} $ a} $ -module tensor $ a $ a $ a $ a $ a $ and $ a a $ and a $ and a和a的相关性 - 最小和最大规范的$ b $。我们在这种情况下介绍并研究了模块量化图,模块精确性和模块核对的概念。我们给出了$ c^*$ - 代数的具体示例。
For $ C^*$-algebras $ \mathfrak{A}, A$ and $ B $ where $ A $ and $ B $ are $ \mathfrak{A} $-bimodules with compatible actions, we consider amalgamated $ \mathfrak{A} $-module tensor product of $ A $ and $ B $ and study its relation with the C*-tensor product of $A$ and $B$ for the min and max norms. We introduce and study the notions of module tensorizing maps, module exactness, and module nuclear pairs of $ C^*$-algebras in this setting. We give concrete examples of $C^*$-algebras on inverse semigroups.