论文标题

一种直接测量原始磁盘中同位素比率的新方法:$^{12} $ co/$ co/$^{13} $ co比率的案例研究

A new method for direct measurement of isotopologue ratios in protoplanetary disks: a case study of the $^{12}$CO/$^{13}$CO ratio in the TW Hya disk

论文作者

Yoshida, Tomohiro C., Nomura, Hideko, Furuya, Kenji, Tsukagoshi, Takashi, Lee, Seokho

论文摘要

行星系统被认为诞生于原星磁盘中。同位素比是通过原球门磁盘研究从分子云到行星系统的材料起源和进化的强大工具。但是,测量同位素(同位素学)比率,尤其是在原月球磁盘中,这是一项挑战,因为主要物种的发射线饱和。我们开发了一种新方法来克服这些挑战,通过使用由热扩展引起的光学细线机翼。作为该方法的第一个应用,我们分析了两个一氧化碳同位素线,$^{12} $ $ 3-2 $和$^{13} $ $ 3-2 $,从与Atacama大米/亚毫米阵列的protoplanetary盘的档案观测中。 $^{12} $ co/$^{13} $ co比率估计为$ {20 \ pm5} $,在$ {70-110} $ au的disk radii at disk radii中,该$ {70-110} $ au明显小于本地媒介物介质中观察到的值,$ \ sim69 $。这意味着同位素交换反应发生在$ \ rm c/o> 1 $的低温环境中。相比之下,建议在外磁盘($ r> {130} $ au)中$^{12} $ co/$^{13} $ co高于$ \ sim {84} $,这可以通过在尘埃晶粒和CO GESE DEPLETION PRECTES上的同位素学结合能的差异来解释。我们的结果表明,即使在protoplanetary磁盘内部,也可以使用气相$^{12} $ co/$^{13} $ CO可以变化$ {> 4} $甚至在原始磁盘内部,因此可以用于跟踪磁盘中的材料进化。

Planetary systems are thought to be born in protoplanetary disks. Isotope ratios are a powerful tool for investigating the material origin and evolution from molecular clouds to planetary systems via protoplanetary disks. However, it is challenging to measure the isotope (isotopologue) ratios, especially in protoplanetary disks, because the emission lines of major species are saturated. We developed a new method to overcome these challenges by using optically thin line wings induced by thermal broadening. As a first application of the method, we analyzed two carbon monoxide isotopologue lines, $^{12}$CO $3-2$ and $^{13}$CO $3-2$, from archival observations of a protoplanetary disk around TW Hya with the Atacama Large Millimeter/sub-millimeter Array. The $^{12}$CO/$^{13}$CO ratio was estimated to be ${ 20\pm5}$ at disk radii of ${ 70-110}$ au, which is significantly smaller than the value observed in the local interstellar medium, $\sim69$. It implies that an isotope exchange reaction occurs in a low-temperature environment with $\rm C/O>1$ . In contrast, it is suggested that $^{12}$CO/$^{13}$CO is higher than $\sim{ 84}$ in the outer disk ($r > { 130}$ au), which can be explained by the difference in the binding energy of the isotopologues on dust grains and the CO gas depletion processes. Our results imply that the gas-phase $^{12}$CO/$^{13}$CO can vary by a factor of ${ > 4}$ even inside a protoplanetary disk, and therefore, can be used to trace material evolution in disks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源