论文标题
部分可观测时空混沌系统的无模型预测
A Robust and Scalable Attention Guided Deep Learning Framework for Movement Quality Assessment
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Physical rehabilitation programs frequently begin with a brief stay in the hospital and continue with home-based rehabilitation. Lack of feedback on exercise correctness is a significant issue in home-based rehabilitation. Automated movement quality assessment (MQA) using skeletal movement data (hereafter referred to as skeletal data) collected via depth imaging devices can assist with home-based rehabilitation by providing the necessary quantitative feedback. This paper aims to use recent advances in deep learning to address the problem of MQA. Movement quality score generation is an essential component of MQA. We propose three novel skeletal data augmentation schemes. We show that using the proposed augmentations for generating movement quality scores result in significant performance boosts over existing methods. Finally, we propose a novel transformer based architecture for MQA. Four novel feature extractors are proposed and studied that allow the transformer network to operate on skeletal data. We show that adding the attention mechanism in the design of the proposed feature extractor allows the transformer network to pay attention to specific body parts that make a significant contribution towards executing a movement. We report an improvement in movement quality score prediction of 12% on UI-PRMD dataset and 21% on KIMORE dataset compared to the existing methods.