论文标题

部分可观测时空混沌系统的无模型预测

UFRC: A Unified Framework for Reliable COVID-19 Detection on Crowdsourced Cough Audio

论文作者

Chang, Jiangeng, Ruan, Yucheng, Shaoze, Cui, Yit, John Soong Tshon, Feng, Mengling

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We suggested a unified system with core components of data augmentation, ImageNet-pretrained ResNet-50, cost-sensitive loss, deep ensemble learning, and uncertainty estimation to quickly and consistently detect COVID-19 using acoustic evidence. To increase the model's capacity to identify a minority class, data augmentation and cost-sensitive loss are incorporated (infected samples). In the COVID-19 detection challenge, ImageNet-pretrained ResNet-50 has been found to be effective. The unified framework also integrates deep ensemble learning and uncertainty estimation to integrate predictions from various base classifiers for generalisation and reliability. We ran a series of tests using the DiCOVA2021 challenge dataset to assess the efficacy of our proposed method, and the results show that our method has an AUC-ROC of 85.43 percent, making it a promising method for COVID-19 detection. The unified framework also demonstrates that audio may be used to quickly diagnose different respiratory disorders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源