论文标题
部分可观测时空混沌系统的无模型预测
A Dynamical Evolution Study of the Open Clusters: Berkeley 10, Berkeley 81, Berkeley 89 and Ruprecht 135
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
By utilising Gaia EDR3 photometric / astrometric data, we studied the dynamical evolution from the obtained astrophysical, structural and dynamical parameters of the open clusters (OCs), Berkeley 10 (Be 10), Berkeley 81 (Be 81), Berkeley 89 (Be 89), and Ruprecht 135 (Ru 135). The Gaia EDR3 photometric distances from the isochrone fitting method are smaller than the ones of Gaia EDR2. The relaxation times of four OCs are smaller than their ages, in this regard, they are dynamically relaxed. Their steep overall mass function slopes mean that their low mass stars outnumber their massive ones. Their large $τ$ / relatively small $t_{rlx}$ values imply an advanced mass segregation. Therefore, they seem to have lost their low-mass stars much to the field. Be 89's outer parts indicate an expansion with time. However, Be 10 and Be 81 show the relatively shrinkage core/cluster radii due to dynamical evolution. Ru 135 (1.0 Gyr) may have a primordial origin, instead of shrinking in size and mass with time. Be 89's tidal radius is less than its cluster radius. This means that its member stars lie within its tidal radius, in the sense it is gravitationally bound to the cluster. For the rest OCs, the cluster members beyond their tidal radii are gravitationally unbound to the clusters, which are more influenced by the potential of the Galaxy.