论文标题
$ \ frac {l'} {l}(1/2+ε,χ_d)$的值分布
The Distribution of Values of $\frac{L'}{L}(1/2+ε,χ_D)$
论文作者
论文摘要
我们确定值$ \ frac {l'} {l}(1/2+ε,χ_d)$的限制分布为$ d $,而基本歧视因素也有所不同。 在这里,$ 0<ε<\ frac12 $,$χ_d$是与$ d $相关的真实字符。此外,我们还建立了该家族与其限制分布的收敛速度的上限。由于此结果,我们得出了$ \ left | \ frac {l'} {l} {l}(1/2+ε,χ_d)\ right | $的小值的渐近键。
We determine the limiting distribution of the family of values $\frac{L'}{L}(1/2+ε,χ_D)$ as $D$ varies over fundamental discriminants. Here, $0<ε<\frac12$, and $χ_D$ is the real character associated with $D$. Moreover, we also establish an upper bound for the rate of convergence of this family to its limiting distribution. As a consequence of this result, we derive an asymptotic bound for the small values of $\left|\frac{L'}{L}(1/2+ε,χ_D)\right|$.