论文标题
通过基于决策树的不确定性降低的节能数据传输优化
Energy-Efficient Data Transfer Optimization via Decision-Tree Based Uncertainty Reduction
论文作者
论文摘要
科学工具,物联网(IoT)和社交媒体产生的数据的增加和快速增长正在引起数据传输绩效和资源消耗,以引起研究社区的广泛关注。使这种广泛数据移动的网络基础架构和最终系统使用大量的电力,每年以Terawatt小时为单位。在核心网络基础架构中管理能源消耗是一个活跃的研究领域,但是在主动数据传输期间,减少最终系统的功耗的工作量有限。本文提出了一种新型的两相动态吞吐量和能量优化模型,该模型利用离线决策 - 基于基于搜索的树聚类技术将历史数据传输日志和在线搜索优化算法封装和分类,以找到最佳的应用程序和内核层参数组合,从而最大程度地提高了实现的数据传输,同时通过最小化能量消耗。我们的模型还结合了一种合奏方法,可以减少在离线分析阶段找到最佳应用程序和内核层参数时进行的差异不确定性。实验评估结果表明,我们基于决策树的模型通过平均达到117%的吞吐量来优于该领域的最新解决方案,并且在主动数据传输期间,最终系统的能量减少了19%。
The increase and rapid growth of data produced by scientific instruments, the Internet of Things (IoT), and social media is causing data transfer performance and resource consumption to garner much attention in the research community. The network infrastructure and end systems that enable this extensive data movement use a substantial amount of electricity, measured in terawatt-hours per year. Managing energy consumption within the core networking infrastructure is an active research area, but there is a limited amount of work on reducing power consumption at the end systems during active data transfers. This paper presents a novel two-phase dynamic throughput and energy optimization model that utilizes an offline decision-search-tree based clustering technique to encapsulate and categorize historical data transfer log information and an online search optimization algorithm to find the best application and kernel layer parameter combination to maximize the achieved data transfer throughput while minimizing the energy consumption. Our model also incorporates an ensemble method to reduce aleatoric uncertainty in finding optimal application and kernel layer parameters during the offline analysis phase. The experimental evaluation results show that our decision-tree based model outperforms the state-of-the-art solutions in this area by achieving 117% higher throughput on average and also consuming 19% less energy at the end systems during active data transfers.