论文标题
上下文中的彗星:将彗星组成与原始星云模型进行比较
Comets in context: Comparing comet compositions with protosolar nebula models
论文作者
论文摘要
彗星在年轻的太阳系中形成时为化学和物理状况提供了一个宝贵的窗口。我们通过比较在29个彗星样品中观察到的九分子的范围及其平均值与原始星云模型的预测中平面冰的丰度,以了解这些物体在何处和何时形成的何时何地形成这些物体。我们的基金模型,其中冰是从星际介质继承的,可以解释所观察到的每个分子的观察到的混合比范围,但是没有单个位置或时间同时再现所有分子的丰度。这表明每个彗星都由在一系列条件下处理的材料组成。相比之下,磁盘材料的初始组成为“重置”的模型,消除了任何以前的化学史,无法说明彗星中观察到的完整范围。 使用在不同热条件下处理的材料结合的玩具模型,我们发现需要使用温暖(伪装)和冷(富含共)材料的组合,以说明木星家庭和Oort云彗星的平均特性以及我们考虑的单个彗星。这可能是通过早期太阳系中冰涂的粉尘颗粒的运输(径向或垂直)发生的。 将模型与平均木星家庭和Oort云彗星组成的比较表明,在磁盘重叠区域形成的两个家族与A'Hearn等人的发现一致。 (2012年)和尼斯模型的预测(Gomes等,2005,Tsiganis等,2005)。
Comets provide a valuable window into the chemical and physical conditions at the time of their formation in the young solar system. We seek insights into where and when these objects formed by comparing the range of abundances observed for nine molecules and their average values across a sample of 29 comets to the predicted midplane ice abundances from models of the protosolar nebula. Our fiducial model, where ices are inherited from the interstellar medium, can account for the observed mixing ratio ranges of each molecule considered, but no single location or time reproduces the abundances of all molecules simultaneously. This suggests that each comet consists of material processed under a range of conditions. In contrast, a model where the initial composition of disk material is `reset', wiping out any previous chemical history, cannot account for the complete range of abundances observed in comets. Using toy models that combine material processed under different thermal conditions we find that a combination of warm (CO-poor) and cold (CO-rich) material is required to account for both the average properties of the Jupiter-family and Oort cloud comets, and the individual comets we consider. This could occur by the transport (either radial or vertical) of ice-coated dust grains in the early solar system. Comparison of the models to the average Jupiter-family and Oort cloud comet compositions suggest the two families formed in overlapping regions of the disk, in agreement with the findings of A'Hearn et al. (2012) and with the predictions of the Nice model (Gomes et al. 2005, Tsiganis et al. 2005).