论文标题

高度不可逆转的过程的速度限制和紧密的有限时间兰德尔的界限

Speed limit for a highly irreversible process and tight finite-time Landauer's bound

论文作者

Lee, Jae Sung, Lee, Sangyun, Kwon, Hyukjoon, Park, Hyunggyu

论文摘要

Landauer的界限是擦除一点点信息的最低热力学成本。由于这种界限仅适用于绝对过程,因此有限的时间操作会产生额外的能量成本。我们发现,通过建立经典速度限制的一般形式,有限的时间Landauer的束缚。这种紧密的界限捕获了与高度不可逆转的过程的额外成本相关的不同行为,该过程与几乎不可逆转的过程不同。我们还找到了一个最佳动力学,该动力学饱和界限的相等性。我们通过离散的一位和粗粒的位系统证明了该结合的有效性。我们的工作表明,在高速不可逆的计算中,散热耗散的时间比预期的要多。

Landauer's bound is the minimum thermodynamic cost for erasing one bit of information. As this bound is achievable only for quasistatic processes, finite-time operation incurs additional energetic costs. We find a tight finite-time Landauer's bound by establishing a general form of the classical speed limit. This tight bound well captures the divergent behavior associated with the additional cost of a highly irreversible process, which scales differently from a nearly irreversible process. We also find an optimal dynamics which saturates the equality of the bound. We demonstrate the validity of this bound via discrete one-bit and coarse-grained bit systems. Our work implies that more heat dissipation than expected occurs during high-speed irreversible computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源