论文标题
H-Matsumoto更改的cartan连接
Cartan Connection for h-Matsumoto change
论文作者
论文摘要
在本文中,我们研究了松本更改$ \ overline {l}(x,y)= \ frac {l^{2}(x,x,y)} {l(x,y) - β(x,y) - β(x,y)} $,带有\ textsl {h-} vectionsl {h-} vector {我们为这种转变提供了一些基本张量。我们还获得了两个空间的cartan连接系数$ f^{n} =(m^n,l)$和$ \ overline {f}^{\,n} =(m^{n},\ overline {l})$是相同的。
In the present paper, we have studied the Matsumoto change $\overline{L}(x,y)= \frac{L^{2}(x,y)}{L(x,y) - β(x,y)} $ with an \textsl{h-}vector $b_{i}(x,y)$. We have derived some fundamental tensors for this transformation. We have also obtained the necessary and sufficient condition for which the Cartan connection coefficients for both the spaces $F^{n}=(M^n,L)$ and $\overline{F}^{\,n}=(M^{n},\overline{L})$ are same.