论文标题
courant Sigma模型的维度降低和泊松型的谎言理论
Dimensional reduction of Courant sigma models and Lie theory of Poisson groupoids
论文作者
论文摘要
我们表明,在泊松型类托泊的2D泊松sigma模型是与基础谎言双子双子双子双重双重的三courant sigma模型的有效理论产生的。这种现场理论的结果是从谎言理论的结果之后,涉及通过代数路径的广义空间对奇数束束的共截相降低。我们还提供了几个示例,包括符号群的情况,在其中,我们将Crainic-Marcut与3D理论的特定规格固定相关联的构造结构。
We show that the 2d Poisson Sigma Model on a Poisson groupoid arises as an effective theory of the 3d Courant Sigma Model associated to the double of the underlying Lie bialgebroid. This field-theoretic result follows from a Lie-theoretic one involving a coisotropic reduction of the odd cotangent bundle by a generalized space of algebroid paths. We also provide several examples, including the case of symplectic groupoids in which we relate the symplectic realization construction of Crainic-Marcut to a particular gauge fixing of the 3d theory.