论文标题
SOCCERNET跟踪:足球视频中的多个对象跟踪数据集和基准测试
SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in Soccer Videos
论文作者
论文摘要
在足球视频中跟踪对象对于收集球员和团队统计数据非常重要,无论是估计总距离奔跑,控球还是团队组成。视频处理可以帮助自动化这些信息的提取,而无需任何侵入性传感器,因此适用于任何体育场上的任何团队。但是,数据集可用于培训可学习的模型和基准测试以评估普通测试床上的方法的可用性非常有限。在这项工作中,我们为多个对象跟踪提出了一个新颖的数据集,该数据集由每个30秒的200个序列组成,代表了充满挑战的足球场景,以及一个完整的45分钟半场时间,用于长期跟踪。该数据集完全注释了边界框和轨迹ID,从而使足球域中的MOT基线进行训练,并在我们的隔离挑战集中对这些方法进行完整的基准测试。我们的分析表明,足球视频中的多名球员,裁判和球跟踪远非解决,在快速运动或严重遮挡方案中需要进行一些改进。
Tracking objects in soccer videos is extremely important to gather both player and team statistics, whether it is to estimate the total distance run, the ball possession or the team formation. Video processing can help automating the extraction of those information, without the need of any invasive sensor, hence applicable to any team on any stadium. Yet, the availability of datasets to train learnable models and benchmarks to evaluate methods on a common testbed is very limited. In this work, we propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each, representative of challenging soccer scenarios, and a complete 45-minutes half-time for long-term tracking. The dataset is fully annotated with bounding boxes and tracklet IDs, enabling the training of MOT baselines in the soccer domain and a full benchmarking of those methods on our segregated challenge sets. Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved, with several improvement required in case of fast motion or in scenarios of severe occlusion.