论文标题
无监督人员重新识别的隐式样本扩展
Implicit Sample Extension for Unsupervised Person Re-Identification
论文作者
论文摘要
大多数现有的无监督人员重新识别(RE-ID)方法都使用聚类来生成伪标签进行模型培训。不幸的是,聚类有时将不同的真实身份混合在一起,或将相同的身份分为两个或多个子簇。对这些嘈杂簇的培训实质上妨碍了重新ID的准确性。由于每个身份中的样本有限,我们认为可能缺少一些基本信息来很好地揭示准确的簇。为了发现这些信息,我们提出了一个隐式示例扩展(\我们的WholeMethod)方法,以生成我们称为群集边界周围的支持样品的内容。具体而言,我们通过进行性线性插值(PLI)策略从实际样品及其相邻簇中生成支持样品。 PLI用两个关键因素控制生成,即1)从实际样本到其k-near最簇的方向,以及2)与k-nearealt clusters中上下文信息混合的程度。同时,鉴于支持样本,ISE进一步使用了标签的保留损失,将它们拉向相应的实际样品,以便压实每个群集。因此,ISE减少了“子和混合”聚类误差,从而改善了重新ID性能。广泛的实验表明,所提出的方法是有效的,并为无监督的人重新获得了最先进的绩效。代码可在:\ url {https://github.com/paddlepaddle/paddleclas}中获得。
Most existing unsupervised person re-identification (Re-ID) methods use clustering to generate pseudo labels for model training. Unfortunately, clustering sometimes mixes different true identities together or splits the same identity into two or more sub clusters. Training on these noisy clusters substantially hampers the Re-ID accuracy. Due to the limited samples in each identity, we suppose there may lack some underlying information to well reveal the accurate clusters. To discover these information, we propose an Implicit Sample Extension (\OurWholeMethod) method to generate what we call support samples around the cluster boundaries. Specifically, we generate support samples from actual samples and their neighbouring clusters in the embedding space through a progressive linear interpolation (PLI) strategy. PLI controls the generation with two critical factors, i.e., 1) the direction from the actual sample towards its K-nearest clusters and 2) the degree for mixing up the context information from the K-nearest clusters. Meanwhile, given the support samples, ISE further uses a label-preserving loss to pull them towards their corresponding actual samples, so as to compact each cluster. Consequently, ISE reduces the "sub and mixed" clustering errors, thus improving the Re-ID performance. Extensive experiments demonstrate that the proposed method is effective and achieves state-of-the-art performance for unsupervised person Re-ID. Code is available at: \url{https://github.com/PaddlePaddle/PaddleClas}.