论文标题
在$ n $ -HEREDATIRE代数和$ n $ -Slice代数上
On $n$-hereditary algebras and $n$-slice algebras
论文作者
论文摘要
在本文中,我们表明无环$ n $ -Slice代数完全是无型$ n $ n $ hergeartarity代数,其$(n+1)$ - 前介子代数为$(q+1,n+1)$ - koszul。我们还列出了由与$ n $ slice代数相关的代数结构引起的同等三角类别。我们表明,有限类型的较高切片代数成对出现,它们共享Auslander-Reiten Quiver,以较高的前者组件。
In this paper we show that acyclic $n$-slice algebras are exactly acyclic $n$-hereditary algebras whose $(n+1)$-preprojective algebras are $(q+1,n+1)$-Koszul. We also list the equivalent triangulated categories arising from the algebra constructions related to an $n$-slice algebra. We show that higher slice algebras of finite type appear in pairs and they share the Auslander-Reiten quiver for their higher preprojective components.