论文标题
关于图和产物的香农能力
On the Shannon capacity of sums and products of graphs
论文作者
论文摘要
令$θ(g)$表示图$ g $的香农容量。对于任何图表$ g $和$ h $,我们给出了基本证明,不等式$θ(g \ sqcup h)>θ(g)+θ(h)$和$θ(g \ boxtimes h)>θ(g)θ(g)θ(h)$。 Wigderson和Zuiddam [2022]使用Kadison-Dubois双重性和选择的公理独立显示。
Let $Θ(G)$ denote the Shannon capacity of a graph $G$. We give an elementary proof of the equivalence, for any graphs $G$ and $H$, of the inequalities $Θ(G\sqcup H)>Θ(G)+Θ(H)$ and $Θ(G\boxtimes H)>Θ(G)Θ(H)$. This was shown independently by Wigderson and Zuiddam [2022] using Kadison-Dubois duality and the Axiom of choice.