论文标题
具有控制和状态限制的行星着陆最佳控制的结构
Structure of optimal control for planetary landing with control and state constraints
论文作者
论文摘要
本文研究了行星登陆的背景下垂直有动力的下降问题,考虑了滑动斜坡和推力指向限制,并最大程度地减少了任何最终成本。在第一次,它证明了使用Pontryagin的最大原理证明最佳控制的最大最大最大或最大最大 - 最大最大形式,并且考虑到大气的效果,该结果将此结果扩展到问题表达。这也表明,在通用情况下,奇异结构不会出现。第二次,它理论上分析了更具体的问题公式的最佳轨迹,以表明最多可能存在一个接触或边界间隔,并在每个最大值或min arc上具有状态约束。
This paper studies a vertical powered descent problem in the context of planetary landing, considering glide-slope and thrust pointing constraints and minimizing any final cost. In a first time, it proves the Max-Min-Max or Max-Singular-Max form of the optimal control using the Pontryagin Maximum Principle, and it extends this result to a problem formulation considering the effect of an atmosphere. It also shows that the singular structure does not appear in generic cases. In a second time, it theoretically analyzes the optimal trajectory for a more specific problem formulation to show that there can be at most one contact or boundary interval with the state constraint on each Max or Min arc.