论文标题
$ \ mathsf {soca} $和$ \ mathsf {oga} $ for $ \ mathsf {hl} $ spaces具有强属性
$\mathsf{SOCA}$ and $\mathsf{OGA}$ for $\mathsf{HL}$ spaces with strong properties
论文作者
论文摘要
我们在某些类别的遗传性Lindelöf($ \ Mathsf {hl} $)的空间和可分离的空间中研究开放色素。特别是,我们表明,开放图公理的明确版本($ \ mathsf {oga} $)适用于$ \ mathsf {hl} $ strong Choquet Choquet choquet choquet chooquetsuptrizable空间,扩展了狂热的众所周知的结果。此外,我们显示了开放式公理的一致性,对于具有可数差异的常规空间,并且它的正方形也具有它,并更接近众所周知的托德切维奇的猜想:“所有具有可计数扩展的常规空间都具有可计数差的满足$ \ mathsf {oga} $是一致的。
We study open colorings in certain classes of hereditary Lindelöf ($\mathsf{HL}$) spaces and submetrizable spaces. In particular, we show that the definible version for the Open Graph Axiom ($\mathsf{OGA}$) holds for the class of $\mathsf{HL}$ strong Choquet submetrizable spaces extending a well-known result of Feng. Furthermore, we show the consistency of the Open Graph Axiom for regular spaces that have countable spread and it's square also has it, reaching closer to a well known conjecture of Todorčević: "It is consistent that all regular spaces with countable spread satisfy $\mathsf{OGA}$".