论文标题

学习在连续时空的自我调节注意力以及应用程序以进行顺序建议

Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation

论文作者

Chen, Chao, Geng, Haoyu, Yang, Nianzu, Yan, Junchi, Xue, Daiyue, Yu, Jianping, Yang, Xiaokang

论文摘要

用户的兴趣通常在现实世界中是动态的,这既提出了从丰富的行为数据中学习准确偏好的理论和实践挑战。在现有的用户行为建模解决方案中,注意力网络的有效性和相对简单性被广泛采用。尽管经过广泛的研究,但现有的注意仍然受到两个局限性:i)常规关注主要考虑用户行为之间的空间相关性,无论连续时空中这些行为之间的距离如何; ii)这些注意事项大多在过去的所有行为上提供了密集且没有区别的分布,然后专心地将其编码到输出潜在表示中。但是,在用户的未来动作与她/他的历史行为的一小部分相关的实际情况下,这是不合适的。在本文中,我们提出了一个新颖的注意网络,称为自我调节的注意力,该网络对复杂且非线性发展的动态用户偏好进行了建模。我们从经验上证明了我们方法对顶级推荐任务的有效性,并且三个大规模现实世界数据集的结果表明,我们的模型可以实现最新的性能。

User interests are usually dynamic in the real world, which poses both theoretical and practical challenges for learning accurate preferences from rich behavior data. Among existing user behavior modeling solutions, attention networks are widely adopted for its effectiveness and relative simplicity. Despite being extensively studied, existing attentions still suffer from two limitations: i) conventional attentions mainly take into account the spatial correlation between user behaviors, regardless the distance between those behaviors in the continuous time space; and ii) these attentions mostly provide a dense and undistinguished distribution over all past behaviors then attentively encode them into the output latent representations. This is however not suitable in practical scenarios where a user's future actions are relevant to a small subset of her/his historical behaviors. In this paper, we propose a novel attention network, named self-modulating attention, that models the complex and non-linearly evolving dynamic user preferences. We empirically demonstrate the effectiveness of our method on top-N sequential recommendation tasks, and the results on three large-scale real-world datasets show that our model can achieve state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源