论文标题

异常扩散由两个马尔可夫跳跃陷阱机制起源

Anomalous diffusion originated by two Markovian hopping-trap mechanisms

论文作者

Vitali, Silvia, Paradisi, Paolo, Pagnini, Gianni

论文摘要

我们通过密集的模拟表明,异常扩散的范式特征确实是由两种不同的马尔可夫跳跃陷阱机制驱动的(连续时间)随机行走的特征。如果$ p \ in(0,1/2)$和$ 1-p $是每种马尔可夫机制出现的概率,则异常性参数$β\ in(0,1)$结果为$β\ simeq 1-1-1-1/\ {1 + {1 + \ [(1-p)/p]/p]/p]/p] \} $。已经研究了该模型的集合和单粒子可观察物,它们匹配异常扩散的主要特征,因为它们通常在生活系统中测量。特别是,通过包括布朗尼但非高斯的间隔,展示了沃克从指数到伸展指数和最后到高斯分布的著名过渡。

We show through intensive simulations that the paradigmatic features of anomalous diffusion are indeed the features of a (continuous-time) random walk driven by two different Markovian hopping-trap mechanisms. If $p \in (0,1/2)$ and $1-p$ are the probabilities of occurrence of each Markovian mechanism, then the anomalousness parameter $β\in (0,1)$ results to be $β\simeq 1 - 1/\{1 + \log[(1-p)/p]\}$. Ensemble and single-particle observables of this model have been studied and they match the main characteristics of anomalous diffusion as they are typically measured in living systems. In particular, the celebrated transition of the walker's distribution from exponential to stretched-exponential and finally to Gaussian distribution is displayed by including also the Brownian yet non-Gaussian interval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源