论文标题
稀疏的网格时间划定的Galerkin方法,具有流线扩散的传输方程
Sparse grid time-discontinuous Galerkin method with streamline diffusion for transport equations
论文作者
论文摘要
高维运输方程经常发生在科学和工程中。但是,由于其高维度,计算其数值解决方案是具有挑战性的。 在这项工作中,我们开发了一种算法,以使用流线扩散稳定的盖金方法在中等复杂的几何域中有效地求解传输方程。 Ansatz空间是空间稀疏网格和不连续的分段多项式的张量产品。在这里,稀疏网格是在嵌套的多级有限元元素空间上构建的,以提供几何柔韧性。这导致了一个隐式的时间步变方案,我们被证明是稳定和收敛的。如果该解决方案具有额外的规律性,则$ 2D $维的问题的收敛性等于$ d $维度的问题与对数因素相比。 对于实现,我们依靠稀疏网格的表示作为各向异性全网格空间的总和。这使我们能够存储功能,并在序列的常规全网格上进行计算,以利用ANSATZ空间的张量产品结构。以这种方式,可以使用现有的有限元库和GPU加速度。组合技术被用作迭代方案的预处理,以在时间条序列上求解传输方程。 数值测试表明,该方法在多达六个维度的问题中很好地奏效。最后,该方法还用作求解非线性Vlasov-Poisson方程的构建块。
High-dimensional transport equations frequently occur in science and engineering. Computing their numerical solution, however, is challenging due to its high dimensionality. In this work we develop an algorithm to efficiently solve the transport equation in moderately complex geometrical domains using a Galerkin method stabilized by streamline diffusion. The ansatz spaces are a tensor product of a sparse grid in space and discontinuous piecewise polynomials in time. Here, the sparse grid is constructed upon nested multilevel finite element spaces to provide geometric flexibility. This results in an implicit time-stepping scheme which we prove to be stable and convergent. If the solution has additional mixed regularity, the convergence of a $2d$-dimensional problem equals that of a $d$-dimensional one up to logarithmic factors. For the implementation, we rely on the representation of sparse grids as a sum of anisotropic full grid spaces. This enables us to store the functions and to carry out the computations on a sequence regular full grids exploiting the tensor product structure of the ansatz spaces. In this way existing finite element libraries and GPU acceleration can be used. The combination technique is used as a preconditioner for an iterative scheme to solve the transport equation on the sequence of time strips. Numerical tests show that the method works well for problems in up to six dimensions. Finally, the method is also used as a building block to solve nonlinear Vlasov-Poisson equations.