论文标题
DeepZipper II:在深度学习中搜索黑暗能源调查数据中的镜头超新星
DeepZipper II: Searching for Lensed Supernovae in Dark Energy Survey Data with Deep Learning
论文作者
论文摘要
重力镜头超新星(LSNE)是宇宙扩张的重要探针,但它们仍然很少见。当前的宇宙调查可能包含5-10个LSNE,而下一代实验预计将包含数百至数千个系统。我们在观察到的黑能调查(DES)5年SN领域中搜索这些系统-10 3平方米。度在五年内,大约每六个晚上每六个晚上每六个晚上在$ griz $ bands中成像。为了执行搜索,我们利用了DeepZipper方法:一个多分支深度学习体系结构,该体系结构对LSNE的图像级模拟进行了训练,同时从图像的时间序列中学习了空间和时间关系。我们发现,我们的方法在DES SN字段数据中获得了61.13%的LSN召回率为61.13%,假阳性率为0.02%。 DeepZipper从3,459,186个系统中选择了2,245名候选人($ M_I $ $ $ <$ <$ <$ 22.5)。我们采用人类视觉检查来审查网络选择的系统,并在DES SN领域找到三个候选LSNE。
Gravitationally lensed supernovae (LSNe) are important probes of cosmic expansion, but they remain rare and difficult to find. Current cosmic surveys likely contain and 5-10 LSNe in total while next-generation experiments are expected to contain several hundreds to a few thousands of these systems. We search for these systems in observed Dark Energy Survey (DES) 5-year SN fields -- 10 3-sq. deg. regions of sky imaged in the $griz$ bands approximately every six nights over five years. To perform the search, we utilize the DeepZipper approach: a multi-branch deep learning architecture trained on image-level simulations of LSNe that simultaneously learns spatial and temporal relationships from time series of images. We find that our method obtains a LSN recall of 61.13% and a false positive rate of 0.02% on the DES SN field data. DeepZipper selected 2,245 candidates from a magnitude-limited ($m_i$ $<$ 22.5) catalog of 3,459,186 systems. We employ human visual inspection to review systems selected by the network and find three candidate LSNe in the DES SN fields.