论文标题

太阳耀斑预测的机器学习模型的比较分析:识别高性能的活动区域耀斑指标

A Comparative Analysis of Machine-learning Models for Solar Flare Forecasting: Identifying High-performing Active Region Flare Indicators

论文作者

Sinha, Suvadip, Gupta, Om, Singh, Vishal, Lekshmi, B., Nandy, Dibyendu, Mitra, Dhrubaditya, Chatterjee, Saikat, Bhattacharya, Sourangshu, Chatterjee, Saptarshi, Srivastava, Nandita, Brandenburg, Axel, Pal, Sanchita

论文摘要

太阳耀斑会产生不利的空间影响空间和基于地球的技术。但是,由于缺乏任何独特的火炬扳机或单个物理途径,预测耀斑的困难以及延伸的严重空间天气会突显出来。研究表明,多种物理特性有助于主动区域耀斑潜力,从而加剧了挑战。机器学习(ML)的最新发展已实现对高维数据的分析,从而导致越来越更好的耀斑预测技术。但是,对高​​性能的耀斑预测变量的共识仍然难以捉摸。在迄今为止的最全面的研究中,我们通过训练这些磁性参数(HMI和磁性成像器(HMI)(HMI)在板上,对SOLAR DYNARATION(SDORESVERATION(SDOR)的全部量身验证者,我们的SOCITY ALRARAITY CYMS 24。很好地预测活性区域燃烧潜力。 Logistic回归算法返回$ 0.967 \ pm 0.018 $的最高真正技能评分,这可能是任何严格参数研究所获得的最高分类性能。从比较评估中,我们确定诸如总电流螺旋,总垂直电流密度,无签名通量,R_VALUE和总绝对扭曲之类的磁性特性是表现最佳的耀斑指标。我们还介绍和分析了两个新的性能指标,即严重而清晰的空间天气指标。我们的分析限制了最成功的ML算法,并确定了对活动区域耀斑生产力最大的物理参数。

Solar flares create adverse space weather impacting space and Earth-based technologies. However, the difficulty of forecasting flares, and by extension severe space weather, is accentuated by the lack of any unique flare trigger or a single physical pathway. Studies indicate that multiple physical properties contribute to active region flare potential, compounding the challenge. Recent developments in machine learning (ML) have enabled analysis of higher-dimensional data leading to increasingly better flare forecasting techniques. However, consensus on high-performing flare predictors remains elusive. In the most comprehensive study to date, we conduct a comparative analysis of four popular ML techniques (k-nearest neighbor, logistic regression, random forest classifier, and support vector machine) by training these on magnetic parameters obtained from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) for the entirety of solar cycle 24. We demonstrate that the logistic regression and support vector machine algorithms perform extremely well in forecasting active region flaring potential. The logistic regression algorithm returns the highest true skill score of $0.967 \pm 0.018$, possibly the highest classification performance achieved with any strictly parametric study. From a comparative assessment, we establish that the magnetic properties like total current helicity, total vertical current density, total unsigned flux, R_VALUE, and total absolute twist are the top-performing flare indicators. We also introduce and analyze two new performance metrics, namely, severe and clear space weather indicators. Our analysis constrains the most successful ML algorithms and identifies physical parameters that contribute most to active region flare productivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源