论文标题
通过指导的对抗插值进行了很少的伪造检测
Few-shot Forgery Detection via Guided Adversarial Interpolation
论文作者
论文摘要
面部操纵模型的增加导致了社会中的关键问题 - 现实的视觉媒体的综合。随着新伪造方法的出现,以前所未有的速度,现有的伪造检测方法在应用于看不见的新型伪造方法时会遭受大量绩效下降。在这项工作中,我们通过1)基于各种伪造方法的覆盖范围分析来设计少数射击伪造的检测问题,以及2)提出指导的对抗性插值(GAI)。我们的关键见解是,多数和少数伪造类之间存在可转移的分布特征1。具体而言,我们通过在教师网络的指导下,通过将少数样本的伪造物插入到多数样本中,提高了针对新型伪造方法的歧视能力。与通常导致少数族裔过度合适的标准重新平衡方法不同,我们的方法同时考虑了多数信息的多样性以及少数信息的重要性。广泛的实验表明,我们的GAI在已建立的几杆伪造检测基准上实现了最先进的表现。值得注意的是,我们的方法也得到了证实,是对多数和少数伪造方法的选择的强大选择。正式出版版本可在模式识别中获得。
The increase in face manipulation models has led to a critical issue in society - the synthesis of realistic visual media. With the emergence of new forgery approaches at an unprecedented rate, existing forgery detection methods suffer from significant performance drops when applied to unseen novel forgery approaches. In this work, we address the few-shot forgery detection problem by 1) designing a comprehensive benchmark based on coverage analysis among various forgery approaches, and 2) proposing Guided Adversarial Interpolation (GAI). Our key insight is that there exist transferable distribution characteristics between majority and minority forgery classes1. Specifically, we enhance the discriminative ability against novel forgery approaches via adversarially interpolating the forgery artifacts of the minority samples to the majority samples under the guidance of a teacher network. Unlike the standard re-balancing method which usually results in over-fitting to minority classes, our method simultaneously takes account of the diversity of majority information as well as the significance of minority information. Extensive experiments demonstrate that our GAI achieves state-of-the-art performances on the established few-shot forgery detection benchmark. Notably, our method is also validated to be robust to choices of majority and minority forgery approaches. The formal publication version is available in Pattern Recognition.